Discuz! Board

 找回密碼
 立即註冊
搜索
熱搜: 活動 交友 discuz
z»z z z 前面的文章中
查看: 1|回復: 0

前面的文章中

[複製鏈接]

9

主題

9

帖子

29

積分

新手上路

Rank: 1

積分
29
發表於 18:10:06 | 顯示全部樓層 |閱讀模式
我们已经学习了K近邻、朴素贝叶斯、逻辑回归、决策树和支持向量机等分类算法,也学习了线性回归等回归算法,其中决策树和随机森林也可以解决回归问题。 今天我们来学习聚类问题中最经典的K均值(K-means)算法,与前面学习过的算法不同的是,聚类算法属于无监督学习,不需要提前给数据的类别打标。 一、基本原理 假设有一个新开办的大学,即便还没有开设任何的社团,有不同兴趣爱好的同学们依然会不自觉的很快聚在一起,比如喜欢打篮球的、喜欢打乒乓球的、喜欢音乐的等等。 这时候就可以顺势开设篮球社团、乒乓球社团、音乐社团,再有同学想加入社团的时候,就可以直接根据自身兴趣选择社团了。

把这个场景迁移到机器学习上,拥有不同兴趣的学生就是数据样本,我们来试着来给他们归类。 向量空间中,距离近的样本意味着有更高的相似度,我们就把它们归为一类,然后用该类型所有样本的中心位置标识这个类别,再有新样本 阿富汗 WhatsApp 号码 进来的时候,新样本离哪个类别的中心点更近,就属于哪个类别,然后再重新计算确定新的中心点。 不断重复上述操作,就能把所有的数据样本分成一个个无交集的簇,也就是对所有数据样本完成了归类。 如何定义B端产品及B端产品经理方法论 相较于C端产品,B端产品最大的特点是:面向特定领域用户,且数量少得多,但更注重对用户专业领域操作流程的深度挖掘——也就是专业性更强,与业务的结合更紧密。





查看详情 > 这就是K-means算法的思路:根据距离公式计算n个样本点的距离,距离越近越相似,然后按这个规则把它们划分到K个类别中,让每个类别中的样本点都是更相似的。 我们把这K个类别叫做“聚类”,聚类的表现就是图中一组一组聚在一起的数据,“聚类”的中心位置叫做“质心”,质心代表了聚类内样本的均值。 需要注意的是,K-means算法中的K表示要分成K个聚类,那么如何确定K值就是一个绕不开的问题了。 其实没有统一的标准,我们一般根据个人经验来设定K值,也可以选几个有代表性的K值,然后选择效果最好结果对应的K值即可。 二、应用场景 电商业务中,精细化运营的前提是对用户进行分层,然后根据不同层次的用户采取不同的运营策略。

回復

使用道具 舉報

您需要登錄後才可以回帖 登錄 | 立即註冊

本版積分規則

Archiver|手機版|自動贊助|z

GMT+8, 18:10 , Processed in 0.035511 second(s), 18 queries .

抗攻擊 by GameHost X3.4

Copyright © 2001-2021, Tencent Cloud.

快速回復 返回頂部 返回列表
一粒米 | 中興米 | 論壇美工 | 設計 抗ddos | 天堂私服 | ddos | ddos | 防ddos | 防禦ddos | 防ddos主機 | 天堂美工 | 設計 防ddos主機 | 抗ddos主機 | 抗ddos | 抗ddos主機 | 抗攻擊論壇 | 天堂自動贊助 | 免費論壇 | 天堂私服 | 天堂123 | 台南清潔 | 天堂 | 天堂私服 | 免費論壇申請 | 抗ddos | 虛擬主機 | 實體主機 | vps | 網域註冊 | 抗攻擊遊戲主機 | ddos |